Mössbauer spectrometry as a tool for study of solid state materials

Lab for MS

27th of November 2015 Prague

Outline

- 1) Theoretical background of Mössbauer effect
- 2) Application potential advantages and disadvantages of MS
 - 3) Experimental setups and fields of their application
- 4) Hyperfine interactions and their connection to physical quantities
 - 5) Mössbauer spectrometry in specific conditions

Energetic scale of electronic and nuclear interactions

- chemical bonding, lattice energy
- electron transitions
- thermal oscilations
- lattice oscilations (phonons)
- γ radiation
- nuclear recoil, Doppler shift
- nuclear quadrupole splitting
- nuclear Zeeman splitting
- Heisenberg linewidth (uncertainity principle)

1 - 10 eV 0.5 - 5 eV 0.05 - 0.5 eV

atomic fluorescence GOOD OBSERVABILITY resolution $\approx 10^{-8}$

0.005 - 0.05 eV

 $10^{4} - 10^{5} \text{ eV}$ $10^{-4} - 10^{-2} \text{ eV}$ ≈ 10^{-5} eV ≈ 10^{-5} eV $10^{-9} - 10^{-6} \text{ eV}$

nuclear fluorescence VERY DIFFICULT resolution ≈ 10⁻¹³

Basic concepts of the method I

Rudolf Ludwig Mössbauer **The Nobel Prize in Physics 1961** "for his researches concerning the resonance absorption of gamma radiation and his discovery in this connection of the effect which bears his name, ... ¹⁹¹Ir crystal recoiless nuclear resonant absorption of γ-ray

recoil energy :(

- Will the absorption occure?
- free atoms case:

$$\begin{split} E_0 &= E_e - E_g \qquad E_{\gamma} = E_0 + \hbar \left(\vec{k}.\vec{v} \right) - \frac{E_{\gamma}^2}{2mc^2} \\ \Gamma &= \frac{\hbar}{\tau_{ex}} \approx 10^{-9} eV \qquad \text{v-dependent} \\ \text{Doppler shift} \\ &\approx 10^{-2} eV \qquad E_R \approx 2 \times 10^{-3} eV \end{split}$$

- γ emitted is lower in E than E needed for absorption to occure – no resonant absorption
- How to get rid of these contributions?

Basic concepts of the method II

• nucleus in crystal lattice case:

$$E_{R} = E_{trans} + E_{vib}$$

• effective mass of crystal M >> m

$$E_{trans} = \frac{E_{\gamma}^2}{2Mc^2} \Box \Gamma$$

• *E*_{vib} is converted into crystal lattice vibrations - "phonon-free" mode

- What we can measure?
- tiny changes in the energy levels of an atomic nucleus in response to its environment (hyperfine interactions)
- one of the most sensitive technique high energy resolution given by relative energy uncertainity up to 10⁻¹⁶

Factors affecting the achievable effect

- Debye-Waller factor/ Mössbauer-Lamb factor
 - probability of recoil-free absorption/emission of γ-quanta

$$f_D(T) = \exp\left\{-\frac{\hbar^2 k^2}{2M} \frac{3}{2k_B \Theta} \left[1 + \frac{2\pi^2}{3} \left(\frac{T}{\Theta}\right)^2\right]\right\} \qquad T \square \Theta$$

recoil energy $\approx E_{\gamma}^{2}$ Debye temperature

- source of radiation
 - existence of suitable source
 - observed γ transition must lead to ground state
 - sufficiently large f (low T, low E_{γ} 5-180 KeV, high Θ , large M)
 - sufficiently long lifetime of Mössbauer level ≈10⁻⁶-10⁻¹¹
 s (narrow linewidth, better energy resolution)
 - properties of parent isotope lifetime, preparation, cost, handling and use in laboratory
- detection of radiation
 - absorption efficiency
 - YAP scintillator (YAIO₃: Ce crystal) (40 % of NaI(TI) light output), fast scintillation-decay time (25 ns)

isotope	E _γ [keV]	f
⁵⁷ Fe	14,4	0,91
¹⁹¹ lr	129	0,06

Perfect nucleus for MS

YAP Absorption Efficiency

Some isotopes used in MS

	MATERSKÉ JADRO	$R[10^{-2}eV]$	Γ/E_0	$\tau_{1/2}[s]$	E ₀ [keV]	n[%]	IZOTOP
studied	Co ⁵⁷	0,19	3,2.10 ⁻¹³	10 ⁻⁷	14,4	2,17	Fe ⁵⁷
		17,5	3,8.10 ⁻¹³	8,7.10 ⁻⁹	136,4		
mostly	Cu ⁶¹	4	$1,2.10^{-12}$	5,3.10 ⁻⁹	67,4	1,25	Ni ⁶¹
theoretical	Ga ⁶⁷	6,9	5,3.10 ⁻¹⁶	9,4.10-6	93	4,11	Zn ⁶⁷
studies (80s)	As ⁷³	3,3	4,3.10 ⁻¹²	1,6.10 ⁻⁹	67	7,76	Ge ⁷³
	$Ag^{107}*$	4,3	1,1.10 ⁻²²	44,3	93	51,35	Ag ¹⁰⁷
also studied	Sn ¹¹⁹ *	0,26	10 ⁻¹²	1,9.10 ⁻⁸	23,8	8,58	S n ¹¹⁹
	Tb ¹⁶¹	0,22	6,2.10 ⁻¹³	2,8.10-8	25,7	18,88	Dy ¹⁶¹
		1,8	2.10^{-12}	3.10-9	74,5		
$R = I_{res} [mm/s]$ = $2\Gamma_{nat}$	Ta ¹⁸²	2,9	3,5.10 ⁻¹²	1,3.10-9	100	26,4	W^{182}
	Os ¹⁹¹ ,Pt ¹⁹¹	4,7	2,7.10 ⁻¹¹	1,3.10 ⁻¹⁰	129,4	38,5	Ir ¹⁹¹
	Pt^{193} , Os^{193}	1,5	$1,1.10^{-12}$	5,7.10-9	73	61,5	Ir ¹⁹³
	Pt ¹⁹⁷ , Hg ¹⁹⁷	1,6	3,1.10 ⁻¹²	1,9.10-9	77,3	100	Au ¹⁹⁷
totally 44 active elements 7	Pu ²⁴⁰	0,45	4,3.10 ⁻¹¹	2,3.10 ⁻¹⁰	45	0	U ²³⁸

Emission probabilities for ⁵⁷Fe

Transition from excited to ground state of ⁵⁷Fe nucleus

	ENERGY	[keV]	PROBABILITY	-
γ emmision	Eo	14.4	1 / 1+α	0.09
Conv e ⁻ K	$E_0 - B_K$	7.3	α _κ / 1+α	0.81
Conv e ⁻ L	$E_0 - B_L$	13.6	α _L / 1+α	0.09
Conv e ⁻ M	$E_0 - B_M$	14.3	α _M / 1+α	0.01
Auger e ⁻ KLL	$B_{K} - 2B_{L}$	5.45.7	α _K (1-(FY) _K) / 1+α	0.57
Χ _{κα}	$B_{K} - B_{L}$	6.3	α _κ (FY) _κ) / 1+α	0.24 8

Experimental setup for ⁵⁷Fe MS

transmission geometry (MS) - absorption spectrum backscatter geometry -5 Velocity (mm) - conversion electron MS (CEMS) - emission spectrum ⁵⁷Fe 05 04 03 02 14.4 keV synchrotron radiation sources Time (ns) - nuclear forward scattering (NFS) - time domain – quantum beats 57Co 270 d new possibilities (ELI beamlines) K - capture - pulse-probe methods (d, y) 1 = 5/2136 keV, 8.7 ns generation of 57Co

Experimental results:

- microscopic information
 - valence state
 - spin state

1)

2)

1)

2)

nearest neighbours

- macroscopic information
 - content of given phase

55Mn

- cationic distribution
- magnetic properties (superparamagnetism)

3/2

1/2

14.4 keV. 97.8 ns

Mössbauer

Experimental arrangement – Transmission MS

Conversion electron Mössbauer spectroscopy

- depth information up to 200 nm
- applications :
 - magnetic properties of layers
 - surface layer composition
 - defects, aging

absorber

Working gas:

96% He + 4% CH₄ 95% He + 5% N₂

Sample:

 \emptyset = 16 mm, d_{max} ~ 1 mm

Hyperfine interactions and Mössbauer parametres

- interactions between a nucleus and elec. and mag. fields created by electrons and other nuclei in the solid
- affect the properties of the 'local probe' nucleus

• total energy:
$$\langle \psi | \hat{H} | \psi \rangle = E_{hf} = E_{el} + E_{mag} = \int \rho(\vec{r}) \phi(\vec{r}) d^3 r - \vec{\mu} \cdot \vec{B}$$

• Taylor Zeeman effect
expansion of
the potential
• E_c - monopole term, isomer shift (*IS*, δ)
• E_q - quadrupole term, quadrupole shift/splitting
(*QS*, ΔE_q)
• E_{mag} - hyperfine field (B_{hf})
• E_{mag} - hyperfine field (B_{hf})

Electric monopole interaction

- Coulomb interaction of nuclear charge distribution with electron distribution at site of nucleus (both source and absorber)
- only s-electrons have non-zero probability
- Isomer shift:

$$\delta = \frac{2\pi}{5} Z e^{2} \left[\left\langle r_{e}^{2} \right\rangle - \left\langle r_{g}^{2} \right\rangle \right] \cdot \left\{ \left| \psi_{A} \left(0 \right) \right|^{2} - \left| \psi_{S} \left(0 \right) \right|^{2} \right\}$$

nuclear radius, negative for ⁵⁷Fe

electron density at site

- calibration to 13µm-foil of cubic α-Fe
- provides information about:
 - oxidation state
 - spin state (HS, LS)
 - bonding properties (covalency, electronegativity)

Electric quadrupole interaction

 interaction between the quadrupole moment of the nucleus Q and electric field gradient (EFG tensor)

$$\mathrm{EFG} = \begin{bmatrix} -\vec{\nabla}\vec{E} \end{bmatrix} = \begin{bmatrix} \vec{\nabla}\vec{\nabla}V \end{bmatrix} = \begin{bmatrix} V_{xx} & V_{xy} & V_{xz} \\ V_{yx} & V_{yy} & V_{yz} \\ V_{zx} & V_{zy} & V_{zz} \end{bmatrix}$$

- only excited state (I > 1/2) has non-zero Q
- Quadrupole splitting:

$$\Delta E_{\rm Q} = \frac{1}{2} e Q V_{zz} \left(1 + \frac{1}{3} \eta^2 \right)^{\frac{1}{2}} \qquad \eta = \frac{V_{XX} - V_{YY}}{V_{ZZ}}$$

- asymmetry parameter : $0 \le \eta \le 1$
- provides information about:
 - oxidation state
 - spin state (HS, LS)
 - local crystal symmetry (zero vs non-zero EFG)
 - bonding properties

Magnetic dipole interaction

 interaction between nuclear magnetic dipole moment m₁ and magnetic field B at the site of nucleus:

$$E_{m_I} = -g_N \mu_N B_{eff} m_I = -\gamma \hbar B_{eff} m_I$$

- leads to Zeeman splitting of both levels into (2I+1) sublevels
- selection rules: $\Delta I = \pm 1$, $\Delta m_I = 0$, ± 1
- Origin of hyperfine fiels at nuclei:

 $B_{\rm eff} = B_{\rm hf} + B_{\rm ext}$

 $B_{\rm hf} = B_{\rm orb} + B_{\rm dip} + B_{\rm Fermi}$

- orbital contribution open shell valence electrons
- dipolar contribution elctron spins, magnetic moments of surrounding ions
- Fermi contact interaction s-electrons polarized by magnetic moments of open shell delectrons
- provides information about magnetic structure, mag. and struc. transitions 15

Combined mag. dipole and elec. quadrupole interaction

 $E_{\rm Q}(m_I,\theta,\phi)^{(1)} = -1^{|m_I|+1/2} (eQV_{zz}/8) \cdot (3\cos^2\theta - 1 + \eta \cdot \sin^2\theta \cos 2\phi)$

Relative intensities of absorption lines

• given by Clebsh-Gordan coeficients

 θ - angle between the direction of the mag. field at the nucleus and the beam of $\gamma\text{-radiation}$

TRANSITION	Δm _I	ANGULAR DEPENDENCE
± 3/2→±1/2	±1	$I_1 = I_6 = 3/8 (1 + \cos^2 \theta)$
$\pm 1/2 \rightarrow \pm 1/2$	0	$I_2 = I_5 = 1/2 (1 - \cos^2 \theta)$
∓ 1/2→±1/2	±1	$I_3 = I_4 = 1/8 (1 + \cos^2 \theta)$

= 2 for random orientation of local= 2 for random orientation of local $= 4 \text{ for } \theta = 90^{\circ} \quad 3:4:1:1:4:3$ $= 0 \text{ for } \theta = 0^{\circ} \quad 3:0:1:1:0:3$

 $I_{1,6}/I_{3,4} = 3 \rightarrow$ doesn't depend on the orientation

MS in low temperatures and high fields

Low temperatures:

- 4.2 320 K
- narrow spectral lines
- temperature induced changes of magnetic state
- study of relaxation phenomena

External mag. field:

- 0 6 T
- separation of nonequivalent iron positions
- magnetic state
- sample:
 - Ø = 16 mm

V

– d ≈ 30 μm

 \sim

Sample

MS in extreme conditions

• High temperatures:

• High pressures:

